首页> 外文OA文献 >Quantum Mechanical Simulation of Electronic Transport in Nanostructured Devices by Efficient Self-consistent Pseudopotential Calculation
【2h】

Quantum Mechanical Simulation of Electronic Transport in Nanostructured Devices by Efficient Self-consistent Pseudopotential Calculation

机译:纳米结构网中电子输运的量子力学模拟   通过有效的自洽赝势计算的装置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a new empirical pseudopotential (EPM) calculation approach tosimulate the million atom nanostructured semiconductor devices under potentialbias using the periodic boundary conditions. To treat the non-equilibriumcondition, instead of directly calculating the scattering states from thesource and drain, we calculate the stationary states by the linear combinationof bulk band method and then decompose the stationary wave function into sourceand drain injecting scattering states according to an approximated top of thebarrier splitting (TBS) scheme based on physical insight of ballistic andtunneling transport. The decomposed electronic scattering states are thenoccupied according to the source/drain Fermi-Levels to yield the occupiedelectron density which is then used to solve the potential, forming aself-consistent loop. The TBS is tested in an one-dimensional effective massmodel by comparing with the direct scattering state calculation results. It isalso tested in a three-dimensional 22 nm double gate ultra-thin-bodyfield-effect transistor study, by comparing the TBS-EPM result with thenon-equilibrium Green's function tight-binding result. We expected the TBSscheme will work whenever the potential in the barrier region is smoother thanthe wave function oscillations and if it does not have local minimum, thusthere is no multiple scattering as in a resonant tunneling diode, and when athree-dimensional problem can be represented as a quasi-one-dimensionalproblem, e.g., in a variable separation approximation. Using our approach, amillion atom non-equilibrium nanostructure device can be simulated with EPM ona single processor computer.
机译:我们提出一种新的经验伪势能(EPM)计算方法,以利用周期性边界条件在势能偏置下模拟百万个原子纳米结构的半导体器件。为了处理非平衡条件,我们不是直接从源极和漏极计算散射状态,而是通过体能带方法的线性组合来计算稳态,然后根据一个近似的顶部将稳态波函数分解为源极和漏极注入散射状态。弹道和隧道运输的物理洞察力的TBS方案。然后根据源/漏费米能级占据分解的电子散射态,以产生占据的电子密度,然后将其用于求解电势,形成一个自洽回路。通过与直接散射状态计算结果进行比较,以一维有效质量模型对TBS进行了测试。通过比较TBS-EPM结果与非平衡Green功能紧密结合结果,在3维22 nm双栅极超薄体场效应晶体管研究中也对其进行了测试。我们预计,只要势垒区中的电势比波函数振荡更平滑并且没有局部最小值,TBS方案都将起作用,因此不会像共振隧穿二极管那样出现多重散射,并且可以将三维问题表示为准一维问题,例如,在可变分离近似中。使用我们的方法,可以在单处理器计算机上用EPM模拟百万原子非平衡纳米结构器件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号